Convergence to equilibrium for the discrete coagulation-fragmentation equations with detailed balance

نویسنده

  • José A. Cañizo
چکیده

Under the condition of detailed balance and some additional restrictions on the size of the coefficients, we identify the equilibrium distribution to which solutions of the discrete coagulation-fragmentation system of equations converge for large times, thus showing that there is a critical mass which marks a change in the behavior of the solutions. This was previously known only for particular cases as the generalized Becker-Döring equations. Our proof is based on an inequality between the entropy and the entropy production which also gives some information on the rate of convergence to equilibrium for solutions under the critical mass.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trend to equilibrium for discrete coagulation equations with strong fragmentation and without balance condition

The coagulation-fragmentation equation describes the concentration fi(t) of particles of size i ∈ N/{0} at time t ≥ 0, in a spatially homogeneous infinite system of particles subjected to coalescence and break-up. We show that when the rate of fragmentation is sufficiently stronger than that of coalescence, (fi(t))i∈N/{0} tends to an unique equilibrium as t tends to infinity. Although we suppos...

متن کامل

Trend to Equilibrium for the Becker-döring Equations: an Analogue of Cercignani’s Conjecture

We investigate the rate of convergence to equilibrium for subcritical solutions to the Becker-Döring equations with physically relevant coagulation and fragmentation coefficients and mild assumptions on the given initial data. Using a discrete version of the log-Sobolev inequality with weights we show that in the case where the coagulation coefficient grows linearly and the detailed balance coe...

متن کامل

Fast Reaction Limit of the Discrete Diffusive Coagulation-fragmentation Equation

The local mass of weak solutions to the discrete diffusive coagulation-fragmentation equation is proved to converge, in the fast reaction limit, to the solution of a nonlinear diffusion equation, the coagulation and fragmentation rates enjoying a detailed balance condition.

متن کامل

Coagulation-Fragmentation Model for Animal Group-Size Statistics

We study coagulation-fragmentation equations inspired by a simple model proposed in fisheries science to explain data for the size distribution of schools of pelagic fish. Although the equations lack detailed balance and admit no H-theorem, we are able to develop a rather complete description of equilibrium profiles and large-time behavior, based on recent developments in complex function theor...

متن کامل

A Finite Element Method for Volume-surface Reaction-diffusion Systems

We consider the numerical simulation of coupled volume-surface reaction-diffusion systems having a detailed balance equilibrium. Based on the conservation of mass, an appropriate quadratic entropy functional is identified and an entropy-entropy dissipation inequality is proven. This allows us to show exponential convergence of solutions to equilibrium by the entropy method. We then investigate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007